Question Number	Answer	Mark
1(a)	Oscillations/vibrations occur in any number of directions/every direction (1)	
1(0)	which are perpendicular to the direction of wave travel /wave	
	propagation/energy transfer (do not accept direction of wave) (1)	
		2
		_
	Oscillations/vibrations may occur in more than one plane (2)	
	(references to particles loses 1st mark	
	marks can be scored from a labelled diagram)	
1(b)*	(OWC – Work must be clear and organised in a logical manner using	
	technical wording where appropriate)	
	Use of polarising filter /Polaroid (not just filter) (1)	
	Rotation/turning of the filter (1)	2
	After 90° rotation (block) intensity changes (1)	3
	(II. of the filter and relative retation 1 mode caller)	
1(0)	(Use of two filters and relative rotation 1 mark only)	
1(0)	Reflected light OR light from ice is (partially) polarised (1)	
	(Polarising) filters/lenses/glasses are at right angles to (the plane of	2
	polarisation of) the light	2
	$\left \begin{array}{c} (1) \\ \end{array} \right $	
	[1 st mark must be about the reflected light being polarised]	
	(Answers which say that the sunglasses are polarising the light score 0/2)	
	Total for question	7

Question	Answer	Mark
Number		
2(a)	Unpolarised light <u>oscillates/vibrates</u> in many planes/ directions while polarised <u>oscillates/vibrates</u> in one plane/direction only OR labelled diagram	1
(b)	Filters at 90° to the (polarised) reflected light. sunglasses cut out the reflected light/polarise light/glare But not the light from the fish OR light from fish is unpolarised.	1 1 1
(c)	Sound is a longitudinal wave OR sound is not a transverse wave OR oscillations in one direction already OR only transverse waves can be polarised.	1
	Total for question	5

Question	Answer	Mark
Number		
3 (a)	Di :	
	Smaller wavelength before gap	1
	Less diffraction and same wavelength	1
(b)	Two sets of concentric circles	1
	equal spacing	1
	Identification of a line of points of destructive interference	1
	Identification of a line of points of constructive interference	1
(c)(i)	Attempt to use inverse relationship (e.g. $1.2 \times 0.60 = \text{constant}$)	1
	Separation =1.8 mm	1
	Example of answer	
	1.2 = constant / 0.6	
	Constant = 0.72	
	Spacing $= 0.72/0.4 = 1.8 \text{ mm}$	
(ii)	(Initially bands) will get close together	1
	Eventually gap too large for overlap to occur, no fringes seen	
	OR reference to fringes produced providing overlap still occurs	1
	Total for question	10

Question Number	Answer	Mark
4	QWC - Work must be clear and organised in a logical manner using technical wording where appropriate	
	Any three	
	Reflected light is polarised	
	(1)	
	Polarised light vibrates/oscillates in one plane/direction (1)	
	Polaroid filter only allows vibrations/oscillations in one direction/plane to pass through	
	(1)	Max 3
	When planes are parallel puddle appears light OR when perpendicular puddle	
	appears dark	
	(1)	
	(for 2 nd and 3 rd mark only one reference to vibrations/oscillations is needed)	
	(candidates who make no reference to puddle and answer in terms of two filters can score 2 nd and 3 rd marks only)	
	Total for question	3

PhysicsAndMathsTutor.com

Question	Answer		Mark
Number			
5(a)	Use of power = intensity x area (1)		
	Use of time = energy / power (1)		
	Time = 19 s (1)		
			3
	Example of calculation		
	$P = 8000 \text{ W m}^{-2} \times 1.5 \times 10^{-5} \text{ m}^{2}$		
	$= 0.12 \text{ J s}^{-1}$		
	$t = 2.3 \text{ J} \div 0.12 \text{ J s}^{-1}$		
	= 19 s		
5(b)(i)	Use of $E = IVt$ (1)	
	Energy = $19\ 000\ J\ (2\ sf)(no\ ue)$ (1)	2
	Example of calculation		
	$E = 1.4 \text{ A} \times 3.7 \text{ V} \times (60 \times 60) \text{ s}$		
	= 18 648 J		
5(b)(ii)	Energy required = $210 \times 2.3 \text{ J}$ (1))	
	Use of efficiency = output energy / input energy (1)	
	Efficiency = 0.026 or 2.6% (1))	3
	Example of calculation		
	efficiency = $210 \times 2.3 \text{ J} \times 100 \% \div 19\ 000 \text{ J}$		
	= 0.026 or 2.6%		
	Total for question		8

Question	Answer		Mark
Number			
* 6 (a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	The waves superpose Or diffraction at the double slits	(1)	
	Where they are in phase Or when path difference is a whole number of wavelengths constructive interference takes place	(1)	
	Where they are in antiphase / when path difference is an odd number of half wavelengths destructive interference takes place	(1)	
	Bright bands are when waves are in phase / when path difference is $n\lambda$ / constructive interference Or reverse for dark bands	(1)	4
6 (b)	coherent = constant phase relationship/difference (between light arriving from		
	the two sources)		
	Or if they are not coherent the phase relationship/difference will vary.	(1)	
	The idea that at a given point there would sometimes be constructive		
	interference and sometimes destructive interference etc	(1)	2
6 (c)	Interference (accept diffraction) only occurs with waves.	(1)	1
	Total for question		7

Question Number	Answer		Mark
7(a)(i)	Initially: constant acceleration	(1)	
	Decreasing acceleration followed by constant velocity	(1)	
	Example of graph		
	Velocity		
	Time		
			2
7(a)(ii)	Drag increases with speed		
	(this may be implied following a description of acceleration)	(1)	
	When drag = weight (- upthrust)	(1)	
	No resultant force Or there is no (further) acceleration Or the forces are in		
	equilibrium	(1)	3
7(a)(iii)	Density of air is negligible compared to density of water		
	Or mass/weight of air displaced is negligible/tiny compared to the		
	\mathbf{Or} the unthrust is negligible/tiny compared to the mass/weight of the raindrop	(1)	
	of the uptilities is negligible, they compared to the mass, weight of the fundicip	(1)	1
7(b)(i)	Use of $v = s/t$	(1)	
	$v = 7.1 \text{ m s}^{-1}$	(1)	
	Example of calculation		
	1100 m		
	$V = \frac{1}{2.6 \text{ min} \times 60}$		
	$v = 7.05 \text{ m s}^{-1}$		
7(1-)(#)		(1)	2
/(D)(11)	See or use of $\rho Vg = 6\pi r \eta v$	(1)	
	See $V = \frac{4}{\pi}r^3$ and values substituted into above equation	(1)	
	3	(4)	
	$r = 2.4 \times 10^{-4}$ m (ecf from part (b)(i) for terminal velocity)	(1)	
	Example of calculation		
	Weight of raindron = $\frac{4}{7} \times \pi \times r^3 \times 1.0 \times 10^3$ kg m ⁻³ × 9.81 N kg ⁻¹		
	Drag force $-6 \times \pi \times r \times 1.8 \times 10^{-5}$ Pa s $\times v$		
	$\frac{4}{7}\pi \times r^{3} \times 1.0 \times 10^{3} \text{ kg m}^{-3} \times 9.81 \text{ N kg}^{-1} - 6 \times \pi \times r \times 1.8 \times 10^{-5} \text{ Pa e } \times 7.1 \text{ m s}^{-1}$		
	$3^{-0.1} \times 10^{-5} \text{Pas} \times 71 \text{ ms}^{-1}$		
	$r^{2} = \frac{1.04 \times 10^{-1} \text{ m}^{-1}}{2 \times 1.0 \times 10^{3} \text{ kg} \text{ m}^{-3} \times 9.81 \text{ N kg}^{-1}} = 1.04 \times 10^{-7}$		
	$r = 2.42 \times 10^{-4} \text{ m}$		3

7(c)	Laminar air flow around main body of rain drop (1) (minimum of 2 lines either side)	
	Some turbulence at the top of the rain drop(1)(must not start below the top 1/3rd of the rain drop)	
	(1 mark max for correct drawing of laminar and turbulent flow around the rain drop but upside down. Labels and arrows not required)	
	Example of diagram	
	- roumier trom	2
	Total for Question	13